
Package: lite (via r-universe)
September 15, 2024

Title Likelihood-Based Inference for Time Series Extremes

Version 1.1.1

Date 2024-07-17

Description Performs likelihood-based inference for stationary time
series extremes. The general approach follows Fawcett and
Walshaw (2012) <doi:10.1002/env.2133>. Marginal extreme value
inferences are adjusted for cluster dependence in the data
using the methodology in Chandler and Bate (2007)
<doi:10.1093/biomet/asm015>, producing an adjusted
log-likelihood for the model parameters. A log-likelihood for
the extremal index is produced using the K-gaps model of
Suveges and Davison (2010) <doi:10.1214/09-AOAS292>. These
log-likelihoods are combined to make inferences about extreme
values. Both maximum likelihood and Bayesian approaches are
available.

Imports chandwich, exdex, graphics, revdbayes, rust, sandwich, stats

License GPL (>= 2)

Encoding UTF-8

Depends R (>= 3.3.0)

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

URL https://paulnorthrop.github.io/lite/,

https://github.com/paulnorthrop/lite

BugReports https://github.com/paulnorthrop/lite/issues

Config/testthat/edition 3

Repository https://paulnorthrop.r-universe.dev

RemoteUrl https://github.com/paulnorthrop/lite

RemoteRef HEAD

RemoteSha 1efc46871f00526bef4b37ee0c1773b276252f22

1

https://doi.org/10.1002/env.2133
https://doi.org/10.1093/biomet/asm015
https://doi.org/10.1214/09-AOAS292
https://paulnorthrop.github.io/lite/
https://github.com/paulnorthrop/lite
https://github.com/paulnorthrop/lite/issues

2 lite-package

Contents
lite-package . 2
Bernoulli . 3
blite . 4
bliteMethods . 7
estfun . 10
flite . 11
fliteMethods . 14
generalisedPareto . 17
logLikVector . 19
predict.blite . 20
returnLevel . 23
returnLevelMethods . 25

Index 28

lite-package lite: Likelihood-Based Inference for Time Series Extremes

Description

Performs likelihood-Based inference for stationary time series extremes. The general approach
follows Fawcett and Walshaw (2012). Marginal extreme value inferences are adjusted for cluster
dependence in the data using the methodology in Chandler and Bate (2007), producing an adjusted
log-likelihood for the model parameters. A log-likelihood for the extremal index is produced using
the K-gaps model of Suveges and Davison (2010). These log-likelihoods are combined to make
inferences about return levels.

Details

The main functions are flite and blite, which perform frequentist and Bayesian inference for
time series extremes, respectively.

See the vignettes vignette("lite-1-frequentist", package = "lite") and
vignette("lite-2-bayesian", package = "lite") for an overview of the package.

Author(s)

Maintainer: Paul J. Northrop <p.northrop@ucl.ac.uk> [copyright holder]

References

Chandler, R. E. and Bate, S. (2007). Inference for clustered. data using the independence loglikeli-
hood. Biometrika, 94(1), 167-183. doi:10.1093/biomet/asm015

Fawcett, L. and Walshaw, D. (2012), Estimating return levels from serially dependent extremes.
Environmetrics, 23, 272-283. doi:10.1002/env.2133

Suveges, M. and Davison, A. C. (2010) Model misspecification in peaks over threshold analysis,
Annals of Applied Statistics, 4(1), 203-221. doi:10.1214/09AOAS292

https://doi.org/10.1093/biomet/asm015
https://doi.org/10.1002/env.2133
https://doi.org/10.1214/09-AOAS292

Bernoulli 3

See Also

flite for frequentist threshold-based inference for time series extremes.

returnLevel for frequentist threshold-based inference for return levels.

blite for Bayesian threshold-based inference for time series extremes.

predict.blite for predictive inference for the largest value observed in N years.

Bernoulli Frequentist inference for the Bernoulli distribution

Description

Functions involved in making inferences about the probability of success in a Bernoulli distribution
using maximum likelihood estimation.

Usage

fitBernoulli(data)

S3 method for class 'Bernoulli'
coef(object, ...)

S3 method for class 'Bernoulli'
vcov(object, ...)

S3 method for class 'Bernoulli'
nobs(object, ...)

S3 method for class 'Bernoulli'
logLik(object, ...)

Arguments

data A numeric vector of outcomes from Bernoulli trials: 0 for a failure, 1 for a
success. Alternatively, a logical vector with FALSE for a failure and TRUE for
a success. Missing values are removed using na.omit.

object A fitted model object returned from fitBernoulli().

... Further arguments. None are used currently.

Details

fitBernoulli: fit a Bernoulli distribution using maximum likelihood estimation, using an inde-
pendence log-likelihood formed by summing contributions from individual observations. No ad-
justment for cluster dependence has been made in estimating the variance-covariance matrix stored
as component in vcov in the returned object.

coef, vcov, nobs and logLik methods are provided.

4 blite

Value

fitBernoulli returns an object of class "Bernoulli", a list with components: maxLogLik, mle,
nobs, vcov, n0, n1, data, obs_data, where data are the input data and, obs_data are the input
data after any missing values have been removed, using na.omit and n0 and n1 are, respectively,
the number of failures and the number of successes.

coef.Bernoulli: a numeric vector of length 1 with name prob. The MLE of the probability of
success.

vcov.Bernoulli: a 1 × 1 matrix with row and column name prob. The estimated variance of the
estimator of the probability of success. No adjustment for cluster dependence has been made.

nobs.Bernoulli: a numeric vector of length 1 with name prob. The number of observations used
to estimate the probability of success.

logLik.Bernoulli: an object of class "logLik": a numeric scalar with value equal to the max-
imised log-likelihood. The returned object also has attributes nobs, the numbers of observations
used in this model fit, and "df" (degrees of freedom), which is equal to the number of total number
of parameters estimated (1).

Examples

Set up data
cdata <- c(exdex::cheeseboro)
u <- 45
exc <- cdata > u

Fit a Bernoulli distribution
fit <- fitBernoulli(exc)

Calculate the log-likelihood at the MLE
res <- logLikVector(fit)

The logLik method sums the individual log-likelihood contributions.
logLik(res)

nobs, coef, vcov, logLik methods for objects returned from fitBernoulli()
nobs(fit)
coef(fit)
vcov(fit)
logLik(fit)

blite Bayesian threshold-based inference for time series extremes

Description

Performs threshold-based Bayesian inference for 3 aspects of stationary time series extremes: the
probability that the threshold is exceeded, the marginal distribution of threshold excesses and the
extent of clustering of extremes, as summarised by the extremal index.

blite 5

Usage

blite(
data,
u,
cluster,
k = 1,
inc_cens = TRUE,
ny,
gp_prior = revdbayes::set_prior(prior = "mdi", model = "gp"),
b_prior = revdbayes::set_bin_prior(prior = "jeffreys"),
theta_prior_pars = c(1, 1),
n = 1000,
type = c("vertical", "none"),
...

)

Arguments

data A numeric vector or numeric matrix of raw data. If data is a matrix then the
log-likelihood is constructed as the sum of (independent) contributions from dif-
ferent columns. A common situation is where each column relates to a different
year.
If data contains missing values then split_by_NAs isvused to divide the data
further into sequences of non-missing values, stored in different columns in a
matrix. Again, the log-likelihood is constructed as a sum of contributions from
different columns.

u A numeric scalar. The extreme value threshold applied to the data. See Details
for information about choosing u.

cluster This argument is used to set the argument cluster to meatCL, which calculates
the matrix V passed as the argument V to adjust_loglik. If data is a matrix
and cluster is missing then cluster is set so that data in different columns are
in different clusters. If data is a vector and cluster is missing then cluster is
set so that each observation forms its own cluster.
If cluster is supplied then it must have the same structure as data: if data is
a matrix then cluster must be a matrix with the same dimensions as data and
if data is a vector then cluster must be a vector of the same length as data.
Each entry in cluster sets the cluster of the corresponding component of data.

k, inc_cens Arguments passed to kgaps. k sets the value of the run parameter K in the K-
gaps model for the extremal index. inc_cens determines whether contributions
from right-censored inter-exceedance times are used. See Details for informa-
tion about choosing k.

ny A numeric scalar. The (mean) number of observations per year. Setting this ap-
propriately is important when making predictive inferences using predict.blite,
but ny is not used by blite so it need not be supplied now. If ny is supplied
to blite then it is stored for use by predict.blite. Alternatively, ny can
be supplied in a later call to predict.blite. If ny is supplied to both blite

6 blite

and predict.blite then the value supplied to predict.blite will take prece-
dence, with no warning given.

gp_prior A list to specify a prior distribution for the GP parameters (σu, ξ), set using
set_prior.

b_prior A list to specify a prior distribution for the Bernoulli parameter σu, set using
set_bin_prior.

theta_prior_pars

A numerical vector of length 2 containing the respective values of the parameters
α and β of a Beta(α, β) prior for the extremal index θ.

n An integer scalar. The size of posterior sample required.

type A character scalar. Either "vertical" to adjust the independence log-likelihood
vertically, or "none" for no adjustment. Horizontal adjustment is not offered
because it does not preserve the correct support of the posterior distribution.

... Further arguments to be passed to the function meatCL in the sandwich package.
In particular, the clustering adjustment argument cadjust may make a differ-
ence if the number of clusters is not large.

Details

See flite for details of the (adjusted) likelihoods on which these Bayesian inferences are based.

The likelihood is based on a model for 3 independent aspects.

1. A Bernoulli(pu) model for whether a given observation exceeds the threshold u.

2. A generalised Pareto, GP(σu, ξ), model for the marginal distribution of threshold excesses.

3. The K-gaps model for the extremal index θ.

The general approach follows Fawcett and Walshaw (2012).

The contributions to the likelihood for pu and (σu, ξ) are based on the vertically-adjusted likelihoods
described in flite. This is an example of Bayesian inference using a composite likelihood Ribatet
et al (2012). Priors for pu (σu, ξ) and θ are set using the arguments gp_prior, b_prior and
theta_prior_pars. Currently, only priors where pu (σu, ξ) and θ are independent a priori are
allowed.

Two tuning parameters need to be chosen: a threshold u and the K-gaps run parameter K. The
exdex package has a function choose_uk to inform this choice.

Random samples are simulated from the posteriors for pu and (σu, ξ) (using ru) and θ (using
kgaps_post).

Value

An object of class c("blite", "lite", "chandwich"). This object is an n ×4 matrix containing
the posterior samples, with column names c("p[u]", "sigma[u]", "xi", "theta").

The object also has the attributes "Bernoulli", "gp", "theta", which provide the fitted model
objects returned from adjust_loglik (for "Bernoulli" and "gp") and kgaps (for "theta"). The
named input arguments are returned in a list as the attribute inputs. If ny was not supplied then its
value is NA. The call to blite is provided in the attribute "call". A call to flite is used to create

bliteMethods 7

adjusted log-likelihoods for pu and (σu, ξ). The object returned from the call is provided as the
attribute "flite_object".

Objects inheriting from class "blite" have coef, nobs, plot, summary, vcov and confint meth-
ods. See bliteMethods.

predict.blite can be used to make predictive inferences about the largest value to be observed in
N years.

References

Fawcett, L. and Walshaw, D. (2012), Estimating return levels from serially dependent extremes.
Environmetrics, 23, 272-283. doi:10.1002/env.2133

Ribatet, M., Cooley, D., & Davison, A. C. (2012). Bayesian inference from composite likelihoods,
with an application to spatial extremes. Statistica Sinica, 22(2), 813-845.

See Also

bliteMethods, including plotting the posterior samples.

predict.blite to make predictive inferences about future extreme values.

flite for frequentist threshold-based inference for time series extremes.

choose_uk to inform the choice of the threshold u and run parameter K.

Examples

Cheeseboro wind gusts

cdata <- exdex::cheeseboro
Each column of the matrix cdata corresponds to data from a different year
blite() sets cluster automatically to correspond to column (year)
cpost <- blite(cdata, u = 45, k = 3)
summary(cpost)

Plots of posterior samples
plot(cpost)

Credible intervals
confint(cpost)

bliteMethods Methods for objects of class "blite"

Description

Methods for objects of class "blite" returned from blite. confint.blite is a misnomer: it
returns (equi-tailed) Bayesian credible intervals.

https://doi.org/10.1002/env.2133

8 bliteMethods

Usage

S3 method for class 'blite'
plot(x, which = c("all", "pu", "gp", "xi", "theta"), ...)

S3 method for class 'blite'
coef(object, fun, ...)

S3 method for class 'blite'
vcov(object, ...)

S3 method for class 'blite'
nobs(object, ...)

S3 method for class 'blite'
summary(
object,
short = TRUE,
mean = TRUE,
digits = max(3, getOption("digits") - 3L),
...

)

S3 method for class 'summary.blite'
print(x, ...)

S3 method for class 'blite'
confint(object, parm = "all", level = 0.95, ...)

Arguments

x An object inheriting from class "blite", a result of a call to blite.

which A character scalar indicating which plot(s) to produce. If which = "all" then
all 4 plots described in Details are produced. Otherwise, only one of these plots
is produced, with the possible names of the arguments being in the order that the
plots are described in Details.

... For plot.blite: arguments passed to plot, such as graphical parameters.
For coef.blite: additional arguments passed to fun.
For print.summary.blite: additional arguments passed to print.default.
Otherwise ... is unused.

object An object of class "blite", returned by blite.

fun A summary function to be applied to each column of the simulated values in
object. If fun is missing then mean is used.

short A logical scalar that determines the form of the output. See Details.

mean A logical scalar. Determines the form of the output if short = TRUE. See Details.

digits An integer. Passed to signif to round the values in the summary.

bliteMethods 9

parm A character vector specifying the parameters for which confidence intervals are
required. The default, which = "all", produces confidence intervals for all the
parameters, that is, pu, σu, ξ and θ. If which = "gp" then intervals are produced
only for σu and ξ. Otherwise, parm must be a subset of c("pu", "sigmau",
"xi", "theta").

level The credible level required. A numeric scalar in (0, 1).

Details

For plot.blite, if which = "all" then 4 plots are produced.

• Top left: histogram of the posterior sample for the threshold exceedance probability pu.

• Top right: scatter plot of posterior sample for the GP parameters (σu, ξ). The linear constraint
ξ > −σu/x(n) is drawn on the plot.

• Bottom left: histogram of the posterior sample for the GP shape parameter ξ.

• Bottom right: histogram of the posterior sample for the extremal index θ.

Value

plot.blite: No return value, only the plot is produced.

coef.blite: a numeric vector of length 4 with names c("p[u]", "sigma[u]", "xi", "theta").
The values of summary statistics calculated using the function fun.

vcov.blite: a 4×4 matrix with row and column names c("p[u]", "sigma[u]", "xi", "theta").
An estimate of the posterior covariance matrix, calculated using cov.

nobs.blite: a numeric vector of length 3 with names c("p[u]", "gp", "theta"). The respective
number of observations used to infer pu, (σu, ξ) and θ.

summary.blite: an object containing the original function call and a matrix of summaries of the
posterior samples for each of the parameters. If short = TRUE then there are 2 columns, containing
either the sample posterior means and standard deviations (mean = TRUE) or the sample posterior
medians and inter-quartile ranges (mean = FALSE). If short = FALSE then there are 4 columns, with
each column containing the usual 6-number summary produced by summary. The object is printed
by print.summary.blite.

print.summary.blite: the argument x is returned, invisibly.

confint.blite: a numeric matrix with 2 columns giving the lower and upper credible limits for
each parameter. These columns are labelled as (1-level)/2 and 1-(1-level)/2, expressed as a
percentage, by default 2.5% and 97.5%. The row names are the names of the parameters supplied
in parm.

See Also

blite to perform frequentist threshold-based inference for time series extremes.

predict.blite: for predictive inference for the largest value observed in N years.

10 estfun

estfun Functions for the estfun method

Description

Functions to calculate contributions to the score vector from individual observations for a fitted
model object.

Usage

S3 method for class 'Bernoulli'
estfun(x, ...)

S3 method for class 'GP'
estfun(x, eps = 1e-05, m = 3, ...)

Arguments

x A fitted model object.

... Further arguments. None are used for estfun.Bernoulli or estfun.GP.

eps, m These control the estimation of the observed information in gpObsInfo when
the GP shape parameter ξ is very close to zero. In these cases, direct calculation
is unreliable. eps is a (small, positive) numeric scalar. If the absolute value of
the input value of ξ, that is, pars[2], is smaller than eps then we approximate
the [2, 2] element using a Taylor series expansion in ξ, evaluated up to and
including the mth term.

Details

An estfun method is used by meatCL to calculate the meat in the sandwich covariance estimator on
which the log-likelihood adjustments in flite are based. Specifically, meatCL is used to calculate
the argument V passed to adjust_loglik.

Value

An n× k matrix containing contributions to the score function from n observations for each of the
k parameters.

estfun.Bernoulli: an n × 2 matrix, where n is the sample size, the length of the input data to
fitBernoulli. The column is named prob.

estfun.GP: an n× 2 matrix, where n is the sample size, the length of the input data to fitGP. The
columns are named sigma[u] and xi.

See Also

Bernoulli for maximum likelihood inference for the Bernoulli distribution.

generalisedPareto for maximum likelihood inference for the generalised Pareto distribution.

flite 11

Examples

library(sandwich)

estfun.Bernoulli
bfit <- fitBernoulli(c(exdex::cheeseboro) > 45)
head(estfun(bfit))

estfun.generalisedPareto
gpfit <- fitGP(c(exdex::cheeseboro), u = 45)
head(estfun(gpfit))

flite Frequentist threshold-based inference for time series extremes

Description

Performs threshold-based frequentist inference for 3 aspects of stationary time series extremes: the
probability that the threshold is exceeded, the marginal distribution of threshold excesses and the
extent of clustering of extremes, as summarised by the extremal index.

Usage

flite(data, u, cluster, k = 1, inc_cens = TRUE, ny, ...)

Arguments

data A numeric vector or numeric matrix of raw data. If data is a matrix then the
log-likelihood is constructed as the sum of (independent) contributions from dif-
ferent columns. A common situation is where each column relates to a different
year.
If data contains missing values then split_by_NAs is used to divide the data
further into sequences of non-missing values, stored in different columns in a
matrix. Again, the log-likelihood is constructed as a sum of contributions from
different columns.

u A numeric scalar. The extreme value threshold applied to the data. See Details
for information about choosing u.

cluster This argument is used to set the argument cluster to meatCL, which calculates
the matrix V passed as the argument V to adjust_loglik. If data is a matrix
and cluster is missing then cluster is set so that data in different columns are
in different clusters. If data is a vector and cluster is missing then cluster is
set so that each observation forms its own cluster.
If cluster is supplied then it must have the same structure as data: if data is
a matrix then cluster must be a matrix with the same dimensions as data and
if data is a vector then cluster must be a vector of the same length as data.
Each entry in cluster sets the cluster of the corresponding component of data.

12 flite

k, inc_cens Arguments passed to kgaps. k sets the value of the run parameter K in the K-
gaps model for the extremal index. inc_cens determines whether contributions
from right-censored inter-exceedance times are used. See Details for informa-
tion about choosing k.

ny A numeric scalar. The (mean) number of observations per year. Setting this
appropriately is important when making inferences about return levels, using
returnLevel, but ny is not used by flite so it need not be supplied now. If ny
is supplied to flite then it is stored for use by returnLevel. Alternatively, ny
can be supplied in a later call to returnLevel. If ny is supplied to both flite
and returnLevel then the value supplied to returnLevel will take precedence,
with no warning given.

... Further arguments to be passed to the function meatCL in the sandwich package.
In particular, the clustering adjustment argument cadjust may make a differ-
ence if the number of clusters is not large.

Details

There are 3 independent parts to the inference, all performed using maximum likelihood estimation.

1. A Bernoulli(pu) model for whether a given observation exceeds the threshold u.

2. A generalised Pareto, GP(σu, ξ), model for the marginal distribution of threshold excesses.

3. The K-gaps model for the extremal index θ.

The general approach follows Fawcett and Walshaw (2012).

For parts 1 and 2, inferences based on a mis-specified independence log-likelihood are adjusted to
account for clustering in the data. Here, we follow Chandler and Bate (2007) to estimate adjusted
log-likelihood functions for pu and for (σu, ξ), with the argument cluster defining the clusters.
This aspect of the calculations is performed using the adjust_loglik in the chandwich package
(Northrop and Chandler, 2021). The GP distribution initial fit of the GP distribution to threshold
excesses is performed using the grimshaw_gp_mle function in the revdbayes package (Northrop,
2020).

In part 3, the methodology described in Suveges and Davison (2010) is implemented using the
exdex package (Northrop and Christodoulides, 2022).

Two tuning parameters need to be chosen: a threshold u and the K-gaps run parameter K. The
exdex package has a function choose_uk to inform this choice.

Each part of the inference produces a log-likelihood function (adjusted for parts 1 and 2). These
log-likelihoods are combined (summed) to form a log-likelihood function for the parameter vector
(pu, σu, ξ, θ). Return levels are a function of these parameters and therefore inferences for return
levels can be based on this log-likelihood.

Value

An object of class c("flite", "lite", "chandwich"). This object is a function with 2 arguments:

• pars, a numeric vector of length 4 to supply the value of the parameter vector (pu, σu, ξ, θ),

flite 13

• type, a character scalar specifying the type of adjustment made to the independence log-
likelihood in parts 1 and 2, one of "vertical", "none", "cholesky", or "spectral". For
details see Chandler and Bate (2007). The default is "vertical" for the reason given in the
description of the argument adj_type in plot.flite.

The object also has the attributes "Bernoulli", "gp", "theta", which provide the fitted model
objects returned from adjust_loglik (for "Bernoulli" and "gp") and kgaps (for "theta"). The
named input arguments are returned in a list as the attribute inputs. If ny was not supplied then its
value is NA. The call to flite is provided in the attribute "call".

Objects inheriting from class "flite" have coef, logLik, nobs, plot, summary, vcov and confint
methods. See fliteMethods.

returnLevel can be used to make frequentist inferences about return levels.

References

Chandler, R. E. and Bate, S. (2007). Inference for clustered. data using the independence loglikeli-
hood. Biometrika, 94(1), 167-183. doi:10.1093/biomet/asm015

Fawcett, L. and Walshaw, D. (2012), Estimating return levels from serially dependent extremes.
Environmetrics, 23, 272-283. doi:10.1002/env.2133

Northrop, P. J. and Chandler, R. E. (2021). chandwich: Chandler-Bate Sandwich Loglikelihood
Adjustment. R package version 1.1.5. https://CRAN.R-project.org/package=chandwich.

Northrop, P. J. and Christodoulides, C. (2022). exdex: Estimation of the Extremal Index. R package
version 1.1.1. https://CRAN.R-project.org/package=exdex/.

Northrop, P. J. (2020). revdbayes: Ratio-of-Uniforms Sampling for Bayesian Extreme Value Anal-
ysis. R package version 1.3.9. https://paulnorthrop.github.io/revdbayes/

Suveges, M. and Davison, A. C. (2010) Model misspecification in peaks over threshold analysis,
Annals of Applied Statistics, 4(1), 203-221. doi:10.1214/09AOAS292

See Also

fliteMethods, including plotting (adjusted) log-likelihoods for (pu, σu, ξ, θ).

returnLevel to make frequentist inferences about return levels.

blite for Bayesian threshold-based inference for time series extremes.

Bernoulli for maximum likelihood inference for the Bernoulli distribution.

generalisedPareto for maximum likelihood inference for the generalised Pareto distribution.

kgaps for maximum likelihood inference from the K-gaps model for the extremal index.

choose_uk to inform the choice of the threshold u and run parameter K.

Examples

Cheeseboro wind gusts

Make inferences
cdata <- exdex::cheeseboro
Each column of the matrix cdata corresponds to data from a different year
flite() sets cluster automatically to correspond to column (year)

https://doi.org/10.1093/biomet/asm015
https://doi.org/10.1002/env.2133
https://CRAN.R-project.org/package=chandwich
https://CRAN.R-project.org/package=exdex/
https://paulnorthrop.github.io/revdbayes/
https://doi.org/10.1214/09-AOAS292

14 fliteMethods

cfit <- flite(cdata, u = 45, k = 3)
summary(cfit)

2 ways to find the maximised log-likelihood value
cfit(coef(cfit))
logLik(cfit)

Plots of (adjusted) log-likelihoods
plot(cfit)
plot(cfit, which = "gp")

Confidence intervals
Based on an adjusted profile log-likelihood
confint(cfit)
Symmetric intervals based on large sample normality
confint(cfit, profile = FALSE)

fliteMethods Methods for objects of class "flite"

Description

Methods for objects of class "flite" returned from flite.

Usage

S3 method for class 'flite'
plot(
x,
which = c("all", "pu", "gp", "xi", "theta"),
adj_type = c("vertical", "none", "cholesky", "spectral"),
...

)

S3 method for class 'flite'
coef(object, ...)

S3 method for class 'flite'
vcov(object, adjust = TRUE, ...)

S3 method for class 'flite'
nobs(object, ...)

S3 method for class 'flite'
logLik(object, ...)

S3 method for class 'flite'
summary(object, adjust = TRUE, digits = max(3, getOption("digits") - 3L), ...)

fliteMethods 15

S3 method for class 'summary.flite'
print(x, ...)

S3 method for class 'flite'
confint(
object,
parm = "all",
level = 0.95,
adj_type = c("vertical", "none", "cholesky", "spectral"),
profile = TRUE,
...

)

Arguments

x An object inheriting from class "flite", a result of a call to flite.

which A character scalar indicating which plot(s) to produce. If which = "all" then
all 4 plots described in Details are produced. Otherwise, only one of these plots
is produced, with the possible names of the arguments being in the order that the
plots are described in Details.

adj_type A character scalar passed to conf_intervals and conf_region as the argu-
ment type to select the type of adjustment applied to the independence log-
likelihood. Of the 3 adjustments, "vertical" is preferred because it preserves
constraints on the parameters, whereas the "cholesky" and "spectral" adjust-
ment do not. In the generalised Pareto case the constraint that ξ > −σu/x(n)

where x(n) is the largest excesses of the threshold u, is preserved.

... For plot.flite: arguments passed to plot, such as graphical parameters.
For print.summary.flite: additional arguments passed to print.default.
For confint.flite: additional arguments passed to conf_intervals.
Otherwise ... is unused.

object An object of class "flite", returned by flite.

adjust A logical scalar. If adjust = TRUE then the elements of the variance-covariance
matrix corresponding to (pu, σu, ξ), are estimated using a sandwich estimator.
See flite. Otherwise, this matrix is the inverse of the observed information
matrix.

digits An integer. Passed to signif to round the values in the summary.

parm A character vector specifying the parameters for which confidence intervals are
required. The default, which = "all", produces confidence intervals for all the
parameters, that is, pu, σu, ξ and θ. If which = "gp" then intervals are produced
only for σu and ξ. Otherwise, parm must be a subset of c("pu", "sigmau",
"xi", "theta").

level The confidence level required. A numeric scalar in (0, 1).

profile A logical scalar. If TRUE then confidence intervals based on an (adjusted) profile
loglikelihood are returned. If FALSE then intervals based on approximate large
sample normal theory, which are symmetric about the MLE, are returned.

16 fliteMethods

Details

For plot.flite, if which = "all" then 4 plots are produced.

• Top left: (adjusted) log-likelihood for the threshold exceedence probability pu, with a hori-
zontal line indicating a 95% confidence interval for pu.

• Top right: contour plot of the (adjusted) log-likelihood for the GP parameters (σu, ξ), showing
(25, 50, 75, 90, 95)% confidence regions. The linear constraint ξ > −σu/x(n) is drawn on
the plot.

• Bottom left: (adjusted) log-likelihood for ξ, with a horizontal line indicating a 95% confidence
interval for ξ.

• Bottom right: log-likelihood for the extremal index θ, with a horizontal line indicating a 95%
confidence interval for θ.

Value

plot.flite: No return value, only the plot is produced.

coef.flite: a numeric vector of length 4 with names c("p[u]", "sigma[u]", "xi", "theta").
The MLEs of the parameters pu, σu, ξ and θ.

vcov.flite: a 4×4 matrix with row and column names c("p[u]", "sigma[u]", "xi", "theta").
The estimated variance-covariance matrix for the model parameters. If adjust = TRUE then the ele-
ments corresponding to pu, σu, and ξ are adjusted for cluster dependence using a sandwich estima-
tor; otherwise they are not adjusted.

nobs.flite: a numeric vector of length 3 with names c("p[u]", "gp", "theta"). The respective
number of observations used to estimate pu, (σu, ξ) and θ.

logLik.flite: an object of class "logLik": a numeric scalar with value equal to the maximised
log-likelihood. This is the sum of contributions from three fitted models, from a Bernoulli model
for occurrences of threshold exceedances, a generalised Pareto model for threshold excesses and a
K-gaps model for the extremal index. The returned object also has attributes nobs, the numbers of
observations used in each of these model fits, and "df" (degrees of freedom), which is equal to the
number of total number of parameters estimated (4).

summary.flite: an object containing the original function call and a matrix of estimates and es-
timated standard errors with row names c("p[u]", "sigma[u]", "xi", "theta"). The object is
printed by print.summary.flite.

print.summary.flite: the argument x is returned, invisibly.

confint.flite: a numeric matrix with 2 columns giving the lower and upper confidence limits for
each parameter. These columns are labelled as (1-level)/2 and 1-(1-level)/2, expressed as a
percentage, by default 2.5% and 97.5%. The row names are the names of the parameters supplied
in parm.

See Also

flite to perform frequentist threshold-based inference for time series extremes.

generalisedPareto 17

generalisedPareto Frequentist inference for the generalised Pareto distribution

Description

Functions involved in making inferences about the scale and shape parameters of a generalised
Pareto distribution using maximum likelihood estimation.

Usage

fitGP(data, u)

S3 method for class 'GP'
coef(object, ...)

S3 method for class 'GP'
vcov(object, ...)

S3 method for class 'GP'
nobs(object, ...)

S3 method for class 'GP'
logLik(object, ...)

gpObsInfo(pars, excesses, eps = 1e-05, m = 3)

Arguments

data A numeric vector of raw data. Missing values are removed using na.omit.

u A numeric scalar. The extremal value threshold.

object A fitted model object returned from fitGP().

... Further arguments to be passed to the functions in the sandwich package meat
(if cluster = NULL), or meatCL (if cluster is not NULL).

pars A numeric parameter vector of length 2 containing the values of the generalised
Pareto scale and shape parameters.

excesses A numeric vector of threshold excesses, that is, amounts by which exceedances
of u exceed u.

eps, m These control the estimation of the observed information in gpObsInfo when
the GP shape parameter ξ is very close to zero. In these cases, direct calculation
is unreliable. eps is a (small, positive) numeric scalar. If the absolute value of
the input value of ξ, that is, pars[2], is smaller than eps then we approximate
the [2, 2] element using a Taylor series expansion in ξ, evaluated up to and
including the mth term.

18 generalisedPareto

Details

fitGP: fit a generalised Pareto distribution using maximum likelihood estimation, using an inde-
pendence log-likelihood formed by summing contributions from individual observations. No ad-
justment for cluster dependence has been made in estimating the variance-covariance matrix stored
as component in vcov in the returned object. This function calls grimshaw_gp_mle.

coef, vcov, nobs and logLik methods are provided for objects of class "GP" returned from fitGP.

gpObsInfo: calculates the observed information matrix for a random sample excesses from the
generalized Pareto distribution, that is, the negated Hessian matrix of the generalized Pareto inde-
pendence log-likelihood, evaluated at pars.

Value

fitGP returns an object of class "GP", a list with components: maxLogLik, threshold, mle, vcov,
exceedances, nexc, where exceedances is a vector containing the values that exceed the threshold
threshold and nexc is the length of this vector.

coef.GP: a numeric vector of length 2 with names c("sigma[u]", "xi"). The MLEs of the GP
parameters σu and ξ.

vcov.GP: a 2 × 2 matrix with row and column names c("sigma[u]", "xi"). The estimated
variance-covariance matrix for the model parameters. No adjustment for cluster dependence has
been made.

nobs.GP: a numeric vector of length 1. The number of observations used to estimate (σu, ξ).

logLik.GP: an object of class "logLik": a numeric scalar with value equal to the maximised log-
likelihood. The returned object also has attributes nobs, the numbers of observations used in each
of these model fits, and "df" (degrees of freedom), which is equal to the number of total number of
parameters estimated (2).

gpObsInfo returns a 2 by 2 matrix with row and columns names c("sigma[u]", "xi").

Examples

Set up data and set a threshold
cdata <- c(exdex::cheeseboro)

Fit a generalised Pareto distribution
fit <- fitGP(cdata, 45)

Calculate the log-likelihood at the MLE
res <- logLikVector(fit)

The logLik method sums the individual log-likelihood contributions.
logLik(res)

nobs, coef, vcov, logLik methods for objects returned from fitGP()
nobs(fit)
coef(fit)
vcov(fit)
logLik(fit)

logLikVector 19

logLikVector Functions for log-likelihood contributions

Description

Generic function for calculating log-likelihood contributions from individual observations for a
fitted model object.

Usage

logLikVector(object, ...)

S3 method for class 'Bernoulli'
logLikVector(object, pars = NULL, ...)

S3 method for class 'GP'
logLikVector(object, pars = NULL, ...)

S3 method for class 'logLikVector'
logLik(object, ...)

Arguments

object A fitted model object.

... Further arguments. None are used for either logLikVector.Bernoulli or
logLikVector.GP.

pars A numeric parameter vector.
For logLikVector.Bernoulli this is a vector of length 1 containing a value of
the Bernoulli success probability.
For logLikVector.GP this is a numeric vector of length 2 containing the values
of the generalised Pareto scale (σu) and shape (ξ) parameters.

Details

A logLikVector method is used to construct a log-likelihood function to supply as the argument
loglik to the function adjust_loglik, which performs log-likelihood adjustment for parts 1 and
2 of the inferences performed by flite.

The logLik method logLik.LogLikVector sums the log-likelihood contributions from individual
observations.

Value

For logLikVector: an object of class logLikVec. This is a numeric vector of length n containing
contributions to the the independence log-likelihood from n observations, with attributes "df" (de-
grees of freedom), giving the number of estimated parameters in the model, and "nobs", giving the
number observations used to perform the estimation.

20 predict.blite

For logLik.logLikVector: an object of class logLik. This is a number with the attributes "df"
and "nobs" as described above.

See Also

Bernoulli for maximum likelihood inference for the Bernoulli distribution.
generalisedPareto for maximum likelihood inference for the generalised Pareto distribution.

Examples

logLikVector.Bernoulli
bfit <- fitBernoulli(c(exdex::cheeseboro) > 45)
bvec <- logLikVector(bfit)
head(bvec)
logLik(bvec)
logLik(bfit)

estfun.generalisedPareto
gpfit <- fitGP(c(exdex::cheeseboro), u = 45)
gpvec <- logLikVector(gpfit)
head(gpvec)
logLik(gpvec)
logLik(gpfit)

predict.blite Predictive inference for the largest value observed in N years.

Description

predict method for class "blite". Performs predictive inference about the largest value to be ob-
served over a future time period of N years. Predictive inferences accounts for uncertainty in model
parameters and for uncertainty owing to the variability of future observations.

Usage

S3 method for class 'blite'
predict(
object,
type = c("i", "p", "d", "q", "r"),
x = NULL,
x_num = 100,
n_years = 100,
ny = NULL,
level = 95,
hpd = FALSE,
lower_tail = TRUE,
log = FALSE,
big_q = 1000,
...

)

predict.blite 21

Arguments

object An object of class "blite" returned from blite.

type A character vector. Indicates which type of inference is required:

• "i" for predictive intervals,
• "p" for the predictive distribution function,
• "d" for the predictive density function,
• "q" for the predictive quantile function,
• "r" for random generation from the predictive distribution.

x A numeric vector or a matrix with n_years columns. The meaning of x depends
on type.

• type = "p" or type = "d": x contains quantiles at which to evaluate the dis-
tribution or density function. No element of x can be less than the threshold
attr(object, "inputs")$u.
If x is not supplied then n_year-specific defaults are set: vectors of length
x_num from the 0.1% quantile to the 99% quantile, subject all values being
greater than the threshold.

• type = "q": x contains probabilities in (0,1) at which to evaluate the quan-
tile function. Any values outside (0, 1) will be removed without warn-
ing. No element of p can correspond to a predictive quantile that is be-
low the threshold, attr(object, "inputs")$u. That is, no element of p
can be less than the value of predict.evpost(object, type = "q", x =
attr(object, "inputs")$u).
If x is not supplied then a default value of c(0.025, 0.25, 0.5, 0.75,
0.975) is used.

• type = "i" or type = "r": x is not relevant.

x_num A numeric scalar. If type = "p" or type = "d" and x is not supplied then x_num
gives the number of values in x for each value in n_years.

n_years A numeric vector. Values of N .

ny A numeric scalar. The (mean) number of observations per year. Setting this
appropriately is important. See Details.

level A numeric vector of values in (0, 100). Only relevant when type = "i". Levels
of predictive intervals for the largest value observed in N years, i.e. level%
predictive intervals are returned.

hpd A logical scalar. Only relevant when type = "i".
If hpd = FALSE then the interval is equi-tailed, with its limits produced by
predict.evpost(object, type ="q", x = p), where p = c((1-level/100)/2,
(1+level/100)/2).
If hpd = TRUE then, in addition to the equi-tailed interval, the shortest possible
level% interval is calculated. If the predictive distribution is unimodal then this
is a highest predictive density (HPD) interval.

lower_tail A logical scalar. Only relevant when type = "p" or type = "q". If TRUE (de-
fault), (output or input) probabilities are P [X ≤ x], otherwise, P [X > x].

log A logical scalar. Only relevant when type = "d". If TRUE the log-density is
returned.

22 predict.blite

big_q A numeric scalar. Only relevant when type = "q". An initial upper bound for
the desired quantiles to be passed to uniroot (its argument upper) in the search
for the predictive quantiles. If this is not sufficiently large then it is increased
until it does provide an upper bound.

... Additional optional arguments. At present no optional arguments are used.

Details

The function predict.evpost in the revdbayes package is used to perform the predictive infer-
ences. The effect of adjusting for the values of the extremal index θ in the posterior sample in
object$sim_vals[, "theta"] is to change the effective time horizon from N to θN .

ny provides information about the (intended) frequency of sampling in time, that is, the number of
observations that would be observed in a year if there are no missing values. If the number of ob-
servations may vary between years then ny should be set equal to the mean number of observations
per year.

Supplying ny. The value of ny may have been set in the call to blite. If ny is supplied by the user
in the call to predict.blite then this will be used in preference to the value stored in the fitted
model object. If these two values differ then no warning will be given.

Value

An object of class "evpred", a list containing a subset of the following components:

type The argument type supplied to predict.blite. Which of the following com-
ponents are present depends type.

x A matrix containing the argument x supplied to predict.blite, or set within
predict.blite if x was not supplied, replicated to have n_years columns if
necessary. Only present if type is "p", "d" or "q".

y The content of y depends on type:

• type = "p", "d", "q": A matrix with the same dimensions as x. Contains
distribution function values (type = "p"), predictive density (type = "d")
or quantiles (type = "q").

• type = "r": A numeric matrix with length(n_years) columns and num-
ber of rows equal to the size of the posterior sample.

• type = "i": y is not present.

long A length(n_years)*length(level) by 4 numeric matrix containing the equi-
tailed limits with columns: lower limit, upper limit, n_years, level. Only present
if type = "i". If an interval extends below the threshold then NA is returned.

short A matrix with the same structure as long containing the HPD limits. Only
present if type = "i". Columns 1 and 2 contain NAs if hpd = FALSE or if the
corresponding equi-tailed interval extends below the threshold.

The arguments n_years, level, hpd, lower_tail, log supplied to predict.blite are also in-
cluded, as is the value of ny and model = "bingp".

returnLevel 23

Examples

Cheeseboro wind gusts

cdata <- exdex::cheeseboro
Each column of the matrix cdata corresponds to data from a different year
blite() sets cluster automatically to correspond to column (year)
cpost <- blite(cdata, u = 45, k = 3, ny = 31 * 24)

Interval estimation
predict(cpost)$long
predict(cpost, hpd = TRUE)$short

Density function
plot(predict(cpost, type = "d", n_years = c(100, 1000)))

Distribution function
plot(predict(cpost, type = "p", n_years = c(100, 1000)))

Quantiles
predict(cpost, type = "q", n_years = c(100, 1000))$y

Random generation
plot(predict(cpost, type = "r"))

returnLevel Frequentist threshold-based inference for return levels

Description

Calculates point estimates and confidence intervals for m-year return levels for stationary time series
fitted extreme value model objects returned from flite. Two types of interval may be returned: (a)
intervals based on approximate large-sample normality of the maximum likelihood estimator for
return level, which are symmetric about the point estimate, and (b) profile likelihood-based intervals
based on an (adjusted) log-likelihood.

Usage

returnLevel(
x,
m = 100,
level = 0.95,
ny,
prof = TRUE,
inc = 1/100,
type = c("vertical", "cholesky", "spectral", "none")

)

24 returnLevel

Arguments

x An object inheriting from class "flite" returned from flite.

m A numeric scalar. The return period, in years.

level A numeric scalar in (0, 1). The confidence level required for confidence interval
for the m-year return level.

ny A numeric scalar. The (mean) number of observations per year. Setting this
appropriately is important. See Details.

prof A logical scalar. Should we calculate intervals based on profile log-likelihood?

inc A numeric scalar in (0, 1/2]. Only relevant if prof = TRUE. The increment, a
fraction of the length of the symmetric confidence interval for the m-year return
level, by which we move upwards and downwards from the MLE for the return
level in the search for the lower and upper confidence limits.

type A character scalar. The argument type to the function returned by the function
adjust_loglik, that is, the type of adjustment made to the independence log-
likelihood function in creating an adjusted log-likelihood function. See Details
and Value in adjust_loglik.

Details

For information about return levels see the "Introducing lite" vignette.

ny provides information about the (intended) frequency of sampling in time, that is, the number of
observations that would be observed in a year if there are no missing values. If the number of ob-
servations may vary between years then ny should be set equal to the mean number of observations
per year.

Supplying ny. The value of ny may have been set in the call to flite. If ny is supplied by the
user in the call to returnLevel then this will be used in preference to the value stored in the fitted
model object. If these two values differ then no warning will be given.

For details of the definition and estimation of return levels see the Inference for return levels vi-
gnette.

The profile likelihood-based intervals are calculated by reparameterising in terms of the m-year
return level and estimating the values at which the (adjusted) profile log-likelihood reaches the
critical value logLik(x) - 0.5 * stats::qchisq(level, 1). This is achieved by calculating the
profile log-likelihood for a sequence of values of this return level as governed by inc. Once the
profile log-likelihood drops below the critical value the lower and upper limits are estimated by
interpolating linearly between the cases lying either side of the critical value. The smaller inc the
more accurate (but slower) the calculation will be.

Value

A object (a list) of class "returnLevel", "lite" with the components

rl_sym, rl_prof Named numeric vectors containing the respective lower 100level% limit, the
MLE and the upper 100level% limit for the return level. If prof = FALSE then
rl_prof will be missing.

rl_se Estimated standard error of the return level.

returnLevelMethods 25

max_loglik, crit, for_plot
If prof = TRUE then these components will be present, containing respectively:
the maximised log-likelihood; the critical value and a matrix with return levels
in the first column (ret_levs) and the corresponding values of the (adjusted)
profile log-likelihood (prof_loglik).

m, level The input values of m and level.

ny The value of ny used to infer the return level.

call The call to returnLevel.

References

Coles, S. G. (2001) An Introduction to Statistical Modeling of Extreme Values, Springer-Verlag,
London. doi:10.1007/9781447136750_3

See Also

returnLevelMethods, including plotting the (adjusted) profile log-likelihood for a return level.

Examples

Cheeseboro wind gusts

Make inferences
cdata <- exdex::cheeseboro
Each column of the matrix cdata corresponds to data from a different year
flite() sets cluster automatically to correspond to column (year)
cfit <- flite(cdata, u = 45, k = 3)

These data are hourly for one month (January) year so ny = 31 * 24
Large inc set here for speed, sacrificing accuracy
Default 95% confidence intervals
rl <- returnLevel(cfit, inc = 1 / 10, ny = 31 * 24)
summary(rl)
rl
oldrl <- plot(rl)
oldrl

Quickly recalculate/replot the intervals based on profile log-likelihood
provided that level is smaller than that used to produce rl
newrl <- plot(rl, level = 0.9)
newrl

returnLevelMethods Methods for objects of class "returnLevel"

Description

Methods for objects of class "returnLevel" returned from returnLevel.

https://doi.org/10.1007/978-1-4471-3675-0_3

26 returnLevelMethods

Usage

S3 method for class 'returnLevel'
plot(x, level = NULL, legend = TRUE, digits = 3, plot = TRUE, ...)

S3 method for class 'returnLevel'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'returnLevel'
summary(object, digits, ...)

S3 method for class 'summary.returnLevel'
print(x, ...)

Arguments

x an object of class c("returnLevel", "lite"), a result of a call to returnLevel,
using prof = TRUE.

level A numeric scalar in (0, 1). The confidence level required for the confidence
interval for the m-year return level. If level is not supplied then x$level is
used. level must be no larger than x$level.

legend A logical scalar. Should we add a legend (in the top right of the plot) that gives
the approximate values of the MLE and 100level% confidence limits?

digits For plot.returnLevel: an integer. Passed to signif to round the values in the
legend.
For print.returnLevel: the argument digits to print.default.
For summary.returnLevel: an integer. For number formatting with signif. If
digits is not specified (i.e. missing) then signif() will not be called (i.e. no
rounding will be performed).

plot A logical scalar. If TRUE then the plot is produced. Otherwise, it is not, but the
MLE and confidence limits are returned.

... For plot.returnLevel: arguments passed to plot, such as graphical parame-
ters.
For print.summary.returnLevel: arguments passed to print.default.

object an object of class c("returnLevel", "lite"), a result of a call to returnLevel,
using prof = TRUE.

Details

plot.returnLevel plots the profile log-likelihood for a return level, provided that x returned by
a call to returnLevel using prof = TRUE. Horizontal lines indicate the values of the maximised
log-likelihood and the critical level used to calculate the confidence limits. If level is smaller than
x$level then approximate 100level% confidence limits are recalculated based on the information
contained in x$for_plot.

print.returnLevel prints the call to returnLevel and the estimates and 100x$level% confi-
dence limits for the x$m-year return level.

returnLevelMethods 27

Value

plot.returnLevel: a numeric vector of length 3 containing the lower 100level% confidence
limit, the MLE and the upper 100level% confidence limit is returned invisibly.

print.returnLevel: the argument x is returned, invisibly.

summary.returnLevel: a list containing the list element object$call and a matrix matrix con-
taining the MLE and estimated SE of the return level.

print.summary.returnLevel: the argument x is returned, invisibly.

Examples

See returnLevel.

See Also

returnLevel to perform frequentist threshold-based inference for return levels.

Index

_PACKAGE (lite-package), 2

adjust_loglik, 5, 6, 10–13, 19, 24

Bernoulli, 3, 10, 13, 20
blite, 2, 3, 4, 7–9, 13, 21, 22
bliteMethods, 7, 7

chandwich, 12
choose_uk, 6, 7, 12, 13
coef.Bernoulli (Bernoulli), 3
coef.blite (bliteMethods), 7
coef.flite (fliteMethods), 14
coef.GP (generalisedPareto), 17
conf_intervals, 15
conf_region, 15
confint.blite (bliteMethods), 7
confint.flite (fliteMethods), 14
cov, 9

estfun, 10, 10
exdex, 6, 12

fitBernoulli, 10
fitBernoulli (Bernoulli), 3
fitGP, 10
fitGP (generalisedPareto), 17
flite, 2, 3, 6, 7, 10, 11, 14–16, 19, 23, 24
fliteMethods, 13, 14

generalisedPareto, 10, 13, 17, 20
gpObsInfo (generalisedPareto), 17
grimshaw_gp_mle, 12, 18

kgaps, 5, 6, 12, 13
kgaps_post, 6

lite-package, 2
logLik.Bernoulli (Bernoulli), 3
logLik.flite (fliteMethods), 14
logLik.GP (generalisedPareto), 17

logLik.logLikVector (logLikVector), 19
logLikVector, 19

mean, 8
meat, 10, 17
meatCL, 5, 6, 10–12, 17
missing, 26

na.omit, 3, 4, 17
nobs.Bernoulli (Bernoulli), 3
nobs.blite (bliteMethods), 7
nobs.flite (fliteMethods), 14
nobs.GP (generalisedPareto), 17

plot, 8, 15, 26
plot.blite (bliteMethods), 7
plot.flite, 13
plot.flite (fliteMethods), 14
plot.returnLevel (returnLevelMethods),

25
predict.blite, 3, 5–7, 9, 20
predict.evpost, 22
print.default, 8, 15, 26
print.returnLevel (returnLevelMethods),

25
print.summary.blite, 9
print.summary.blite (bliteMethods), 7
print.summary.flite, 16
print.summary.flite (fliteMethods), 14
print.summary.returnLevel

(returnLevelMethods), 25

returnLevel, 3, 12, 13, 23, 25–27
returnLevelMethods, 25, 25
revdbayes, 12, 22
ru, 6

set_bin_prior, 6
set_prior, 6
signif, 8, 15, 26
split_by_NAs, 5, 11

28

INDEX 29

summary, 9
summary.blite (bliteMethods), 7
summary.flite (fliteMethods), 14
summary.returnLevel

(returnLevelMethods), 25

uniroot, 22

vcov.Bernoulli (Bernoulli), 3
vcov.blite (bliteMethods), 7
vcov.flite (fliteMethods), 14
vcov.GP (generalisedPareto), 17

	lite-package
	Bernoulli
	blite
	bliteMethods
	estfun
	flite
	fliteMethods
	generalisedPareto
	logLikVector
	predict.blite
	returnLevel
	returnLevelMethods
	Index

