Package: lite 1.1.1

lite: Likelihood-Based Inference for Time Series Extremes

Performs likelihood-based inference for stationary time series extremes. The general approach follows Fawcett and Walshaw (2012) <doi:10.1002/env.2133>. Marginal extreme value inferences are adjusted for cluster dependence in the data using the methodology in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>, producing an adjusted log-likelihood for the model parameters. A log-likelihood for the extremal index is produced using the K-gaps model of Suveges and Davison (2010) <doi:10.1214/09-AOAS292>. These log-likelihoods are combined to make inferences about extreme values. Both maximum likelihood and Bayesian approaches are available.

Authors:Paul J. Northrop [aut, cre, cph]

lite_1.1.1.tar.gz
lite_1.1.1.zip(r-4.5)lite_1.1.1.zip(r-4.4)lite_1.1.1.zip(r-4.3)
lite_1.1.1.tgz(r-4.4-any)lite_1.1.1.tgz(r-4.3-any)
lite_1.1.1.tar.gz(r-4.5-noble)lite_1.1.1.tar.gz(r-4.4-noble)
lite_1.1.1.tgz(r-4.4-emscripten)lite_1.1.1.tgz(r-4.3-emscripten)
lite.pdf |lite.html
lite/json (API)
NEWS

# Install 'lite' in R:
install.packages('lite', repos = c('https://paulnorthrop.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/paulnorthrop/lite/issues

On CRAN:

clusteredextremal-indexextreme-value-statisticsextremesfrequentistgeneralised-paretoinferencelikelihoodlog-likelihoodthresholdtime-series

4.56 score 3 stars 12 scripts 222 downloads 7 exports 54 dependencies

Last updated 4 months agofrom:1efc46871f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-winOKNov 14 2024
R-4.5-linuxOKNov 14 2024
R-4.4-winOKNov 14 2024
R-4.4-macOKNov 14 2024
R-4.3-winOKNov 14 2024
R-4.3-macOKNov 14 2024

Exports:blitefitBernoullifitGPflitegpObsInfologLikVectorreturnLevel

Dependencies:abindbackportsbayesplotchandwichcheckmateclicolorspacedistributionaldplyrexdexfansifarvergenericsggplot2ggridgesgluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivpillarpkgconfigplyrposteriorR6RColorBrewerRcppRcppArmadilloRcppRollreshape2revdbayesrlangrustsandwichscalesstringistringrtensorAtibbletidyselectutf8vctrsviridisLitewithrzoo

Bayesian Likelihood-Based Inference for Time Series Extremes

Rendered fromlite-2-bayesian.Rmdusingknitr::rmarkdownon Nov 14 2024.

Last update: 2022-05-16
Started: 2022-05-16

Frequentist Likelihood-Based Inference for Time Series Extremes

Rendered fromlite-1-frequentist.Rmdusingknitr::rmarkdownon Nov 14 2024.

Last update: 2023-01-26
Started: 2022-05-16

Readme and manuals

Help Manual

Help pageTopics
lite: Likelihood-Based Inference for Time Series Extremeslite-package _PACKAGE
Frequentist inference for the Bernoulli distributionBernoulli coef.Bernoulli fitBernoulli logLik.Bernoulli nobs.Bernoulli vcov.Bernoulli
Bayesian threshold-based inference for time series extremesblite
Methods for objects of class '"blite"'bliteMethods coef.blite confint.blite nobs.blite plot.blite print.summary.blite summary.blite vcov.blite
Functions for the 'estfun' methodestfun estfun.Bernoulli estfun.GP
Frequentist threshold-based inference for time series extremesflite
Methods for objects of class '"flite"'coef.flite confint.flite fliteMethods logLik.flite nobs.flite plot.flite print.summary.flite summary.flite vcov.flite
Frequentist inference for the generalised Pareto distributioncoef.GP fitGP generalisedPareto gpObsInfo logLik.GP nobs.GP vcov.GP
Functions for log-likelihood contributionslogLik.logLikVector logLikVector logLikVector.Bernoulli logLikVector.GP
Predictive inference for the largest value observed in N years.predict.blite
Frequentist threshold-based inference for return levelsreturnLevel
Methods for objects of class '"returnLevel"'plot.returnLevel print.returnLevel print.summary.returnLevel returnLevelMethods summary.returnLevel